Python

Python

pandas groupby two types of pandas

How to GroupBy with Python Pandas Like a Boss
 Best Guide to master Pandas GroupBy with Examples for Data Science

In this tutorial, we are showing how to GroupBy with a foundation Python library, Pandas.

We can’t do data science/machine learning without Group by in Python. It is an essential operation on datasets (DataFrame) when doing data manipulation or analysis.

In this complete guide, you’ll learn :
– What is a Pandas GroupBy (object).
– How to create summary statistics for groups with aggregation functions.
– How to create like-indexed objects of statistics for groups with the transformation method.
– How to use the flexible yet less efficient apply function.
– How to use custom functions for multiple columns.
If you want to master this important technique with hands-on examples, don’t miss this guide.

anomaly outlier detection eggs in a tray

How to apply Unsupervised Anomaly Detection on bank transactions
 A use case of Unsupervised Learning with Python, step-by-step

In this tutorial, we’ll show how to detect outliers or anomalies on unlabeled bank transactions with Python.

You’ll learn:
– How to identify rare events in an unlabeled dataset using machine learning algorithms: isolation forest (clustering).
– How to visualize the anomaly detection results.
– How to fight crime with anti-money laundering (AML) or fraud analytics in banks
Use case and tip from people with industry experience

exploratory data analysis flag explore seaborn

How to use Python Seaborn for Exploratory Data Analysis
 Explore an example dataset by Histogram, Heatmap, Scatter plot, Barplot, etc

This is a tutorial of using the seaborn library in Python for Exploratory Data Analysis (EDA).

In this guide, you’ll discover (with examples):

– How to use the seaborn Python package to produce useful and beautiful visualizations, including histograms, bar plots, scatter plots, boxplots, and heatmaps.
– How to explore univariate, multivariate numerical and categorical variables with different plots.
– How to discover the relationships among multiple variables.
– Lots more.

compass into data science how to learn

How to Learn Data Science Online: ALL You Need to Know
 Python, SQL, Machine Learning, Portfolios plus other Online resources

This is a complete roadmap/curriculum of getting into data science with online resources.

Whether you want to learn for free or more efficiently, this guide will walk you through the step-by-step process that’ll put you on the right path. We’ll talk about skills, online courses, books, and other resources.

You’ll discover:

– the basics of data science (Python, SQL, Machine Learning/Statistics) and How to learn them.
– Why and How to build a data science portfolio.
– other tips/resources to dive into the world of data science.
Start your data science journey today!

sentiment analysis leaves

How to do Sentiment Analysis with Deep Learning (LSTM Keras)
 Automatically Classify Reviews as Positive or Negative in Python

In this tutorial, we build a deep learning neural network model to classify the sentiment of Yelp reviews.

Following the step-by-step procedures in Python, you’ll see a real life example and learn:

– How to prepare review text data for sentiment analysis, including NLP techniques.
– How to tune the hyperparameters for the machine learning models.
– How to predict sentiment by building an LSTM model in Tensorflow Keras.
– How to evaluate model performance.
– How sample sizes impact the results compared to a pre-trained tool.
And more.

clock time series forecasting

3 Steps to Time Series Forecasting: LSTM with TensorFlow Keras
 A Practical Example in Python with useful Tips

We present a deep learning time series analysis example with Python. You’ll see:
– How to preprocess/transform the dataset for time series forecasting.
– How to handle large time series datasets when we have limited computer memory.
– How to fit Long Short-Term Memory (LSTM) with TensorFlow Keras neural networks model.

Scroll to Top
We use cookies to ensure you get the best experience on our website.  Learn more.